

Fig. 2. Mode chart with experimental points for MgTiO_3 .

must be determined for plotting experimental points on the dispersive characteristics shown in Fig. 1. For some experimental situations the unique representation of the mode chart is a significant advantage as less prior knowledge of the dielectric constant is needed to make reliable identification.

The experimental points were taken on resonators constructed from a magnesium titanate ceramic for which the nominal dielectric constant is 16 [8]. Data taken for each resonator are indicated by the circle, triangle or square. Successive points for each resonator were obtained by incrementally grinding the length and measuring the resonant frequency at each step. The mount used for these measurements closely resembles the parallel plate arrangement used by Hakki and Coleman [2] to measure the properties of TE modes from lower dielectric constant materials. Excitation was similarly obtained by means of an iris in one of the plates.

The most consistent results were obtained on the TE_{011} mode. This is in agree-

ment with the suggested use of TE modes by Hakki and Coleman. It is also in agreement with the suggestion of Cohn and Kelly [6] that greatest measurement accuracy can be obtained on modes for which no electric field component exists normal to the dielectric surface. This avoids the effect of an apparent series capacity in the air gaps between the dielectric and conducting plates. The high degree of consistency for successive points for the TE_{011} mode, less than ± 0.2 per cent from a best fit curve for each resonator, suggests that a major source of the deviations was in the fabrication procedure.

Although light coupling is desirable for dielectric constant measurements, many applications require tight coupling to the resonators. On the present program, resonators have been constructed for exciting ferrite crystals from X through M band frequencies. No difficulty was encountered in achieving critical coupling in the lower order modes. Critical coupling for 0.300-inch diameter, 0.22- to 0.4-inch length posts at X

band was accomplished through a 0.140-inch iris in a 0.010-inch wall.

In summary, the mode chart has been shown to be a very convenient means of mode selection and display for dielectric resonators. When used in conjunction with TE_{011} dispersive measurements, it affords a simple, accurate method of determining the dielectric constant for a wide range of dielectric values.

ACKNOWLEDGMENT

The authors would like to thank B. R. Hubble for fabrication of the ceramic resonators and aid in development of the related measurement equipment.

D. L. REBSCH
D. C. WEBB
R. A. MOORE

J. D. COWLISHAW¹
Microwave Physics Group
Westinghouse Aerospace Div.
Baltimore, Md.

REFERENCES

- [1] Collin, R. E., *Field theory and guided waves*. New York: McGraw-Hill; 1960.
- [2] Hakki, B. W., and P. D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, *IRE Trans. on Microwave Theory and Techniques*, vol MTT-8, Jul 1960, pp 402-410.
- [3] Okaya, A., and L. F. Barash, The dielectric microwave resonator, *Proc. IRE*, vol 50, Oct 1962, pp 2081-2092.
- [4] Longaker, P. R., and C. S. Roberts, Propagation constants for TE and TM surface waves on an anisotropic dielectric cylinder, *IEEE Trans. on Microwave Theory and Techniques*, vol MTT-11, Nov 1963, pp 543-546.
- [5] D'Atello, R. V., and H. J. Prager, Dielectric resonators for microwave applications, (*Correspondence*), *IEEE Trans. on Microwave Theory and Techniques*, vol MTT-12, Sep 1964, pp 549-550.
- [6] Cohn, S. B., and K. C. Kelly, Investigation of microwave dielectric resonator filters, Second Quarterly Rept., Contract DA-36-039-AMC-02267 (E), Rantec Corp., Calabasas, Calif., Dec 31, 1963.
- [7] Montgomery, C. G., *Techniques of microwave measurements*, *M.I.T. Radiation Lab. Series*, New York: McGraw-Hill, 1947,
- [8] Trans. Tech. Type D-16.

¹ Present address: Westminster College, New Wilmington, Pa.

Rectangular Waveguide Flange Nomenclature

The well-known waveguide nomenclature muddle is exceeded in lack of clarity by the flange nomenclature muddle. For every rectangular waveguide size, which may have several different designations, there are several flanges available, each with its own array of designations. The flange nomenclature muddle may become a major annoyance to those users who use equipment made by different manufacturers in different countries, for manufacturers often state the flange numbers of a device without stating the waveguide size or flange nomenclature system used.

TABLE I
LIST OF FLANGES ACCORDING TO THE FOUR MAJOR FLANGE NOMENCLATURE SYSTEMS

WAVEGUIDES		FLANGES											
IEC 153 IEC- R()	Amer. EIA WR-()	IEC 154 IEC-()		British RCSC 5985-99-()					American Armed Services (Preferred) (UG-()/U)				American EIA
		Plain		Plain			Choke		Plain		Choke		
		Brass	Alum.	Prec.	Brass	Alum.	Brass	Alum.	Prec.	Brass	Alum.		
3	2300	PDR3										CPR2300	
4	2100	PDR4										CPR2100	
5	1800	PDR5										CPR1800	
6	1500	PDR6										CPR1500	
8	1150	PDR8										CPR1150	
9	975	PDR9										CPR975	
12	770	PDR12										CPR770	
14	650	PDR14	083-1573						417B	418A		CPR650	
18	510	PDR18											
22	430	PDR22	083-1578						435A	437A		CPR430	
26	340	PDR26	011-9656						553	554		CPR340	
32	284	UER32 PDR32 PAR32 UAR32	CAR32	083-0010 083-1560 083-0058	012-2939	083-0009 083-1558			53	584		54B	
40	229	UER40 PDR40		011-9657									
48	187	PAR48 PDR48 UAR48	CAR48	083-0042		083-0041			149A	407		148C	
58	159	PAR58 PDR58 UAR58	CAR58	082-1602	083-0129								
70	137	PAR70 PDR70 UAR70	CAR70	083-0038	083-0132		083-0037	083-0131	344	441		343B	
84	112	PBR84 UBR84	PDR84 UER84	011-9660 083-0034	012-0892 011-9112		011-9661 083-0033	012-0893 083-0134	51	138		52B	
100	90	PBR100 UBR100	PDR100 UER100	083-0004 083-0052	083-0151 083-0148		083-0003 083-0051 083-1611	083-0150 011-0114 012-0891	39	135		40B	
120	75	PDR120	UER120										
140	62	PBR140 UBR140	PDR140 UER140	083-0030 011-9660		083-0029 011-9663			419			541A	
180	51	UER180	PDR180		011-9664		011-9665						
220	42	PBR220 UBR220 PCR220	CBR220	011-9666 011-9658			011-9667 011-9659		595	597		596A	
260	34	PCR260											
320	28	PBR320 UBR320	PCR320 CBR320	083-0018 012-4834		083-1553	012-4835		599		381	600A	
400	22	PCR400		011-9668		083-1553					383		
500	19	PCR500 PAR500		083-0026		083-1554							
620	15	PCR620 PFR620		083-1613		083-1554					385		
740	12	PCR740 PFR740		083-0061		083-1554					387		
900	10	PCR900 PFR900				083-1554							
1200	8	PCR1200 PFR1200				083-1555							
1400	7					083-1555							
1800	5					083-1555							
2200	4					083-1555							
2600	3					083-1555							

Flanges classified under the International Electrotechnical Commission, British RCSC, American Armed Services, and American EIA nomenclature systems are listed in Table I. The numbers tabulated along with the publications referenced will serve to identify the majority of flanges currently in use. It is unfortunate, but true, that flanges fitting the same waveguide size, but belonging to different nomenclature systems, may not mate. In case of doubt, the publications listed below should be consulted for precise mechanical details.

The International Electrotechnical Commission system [1] comprises numbers "154 IEC-()" containing, in sequence, the following information: 1) "P" for pressurizable, "C" for pressurizable choke, or "U" for unpressurizable; 2) A, B, C, D, E, or F to denote the appropriate mechanical features; and 3) the number of the IEC waveguide with which the flange is used.

The British RCSC system [2] comprises catalog numbers "5985-99-()" which contain no information concerning the flange type or construction.

The Armed Services preferred flanges are those "UG-()/U" flanges recommended for use in new equipment. The numbers contain no information on flange type or construction. Preferred flanges and other RF equipment is listed in a handbook [3].

The EIA system [4] comprises numbers which contain, in sequence, the following information: 1) "C" for connector, 2) "M" for miniature contact or "P" for pressurizable contact; 3) "R" for rectangular waveguide; 4) number of the EIA waveguide with which the flange is used.

It is encouraging to note that some groups favor a reduction in the total number of designations; Germany's DIN group has begun to adopt the IEC nomenclature system [5]. Convenience dictates that such a change is not possible for all presently-used systems. It is suggested, however, that all specifications should carry the IEC designation in addition to any other system used. For example: "The instrument uses RG-39/U (similar to and will mate with 154 IEC-UBR 100) flanges."

M. MICHAEL BRADY
Norwegian Defence Research Est.
Kjeller, Norway

REFERENCES

- [1] International Electrotechnical Commissions Flanges for waveguides pt 1: general requirement, and measuring methods, Publication 154-1 (1964); Pt 2: relevant specifications for flanges for ordinary rectangular waveguides, Publication 154-2 (1965), IEC, Geneva. (Available from national committees or Bureau Central de la Commission Electrotechnique Internationale, 1, rue de Varembe, Geneva, Switzerland.)
- [2] Ministry of Defence, Defence specification DEF-S532, couplings waveguide, Her Majesty's Stationery Office, London, England, 1958, reprinted with amendments Oct 1963. (Available from: Her Majesty's Stationery Office, York House, King-way, London, W.C. 2, England.)
- [3] Department of Defense, Military standardization handbook, RF transmission lines and fittings MIL-HDBK-216, Defense Supply Agency, Washington, D.C., Jan 4, 1962. (Available from: Naval Supply Depot, 5801 Tabor Avenue, Philadelphia, Pa. 19120, U.S.A.)
- [4] Electronic Industries Association, EIA standards RS-166 (May 1962) and RS-271A (Nov 1963), EIA, N. Y. (Available from: Electronic Industries Association, Engineering Department, 11 West Forty-Second Street, New York 36, N. Y., U.S.A.)
- [5] Deutsche Industrie Normen, DIN 47303, Flansche fur Rohre fur HF-Hohleiter, DIN, Aug 1964 and Mar 1964. (Available from: Beuth-Vertrieb GmbH, Berlin 15 and Köln, Germany.)

Optimum Design of Helix Couplers with Shielding

Helix couplers have to be shielded to insure good match to coaxial cables. In our calculations the effect of the shielding has also been taken into consideration. As a result of this, the calculated dimensions of helix couplers approximate more closely the best experimentally obtained ones.

The calculation is based on simplifying assumptions. The real helix is substituted by a helically conducting cylindrical tube of infinite length and zero thickness. The effect of the dielectric materials is neglected.

In computing the coupling factor, the effect of shielding should also be taken into account. Then, as an approximation the shield itself is also regarded as a helically conducting surface. In this way three coupling factors can be calculated. The resulting coupling factor is given by [1]

$$k = k_{1,2} \sqrt{\frac{1 - k_{2,3}^2}{1 - k_{1,3}^2}} \quad (1)$$

where $k_{1,2}$, $k_{1,3}$, and $k_{2,3}$ are the coupling factors between the inner helix and coupling helix, the inner helix and shield, and the coupling helix and shield, respectively.

If the phase velocities along the helices are equal, the coupling factors are obtained as [2]

$$\left. \begin{aligned} k_{1,2} &= e^{-\beta(a_2-a_1)} \\ k_{1,3} &= e^{-\beta(a_3-a_1)} \\ k_{2,3} &= e^{-\beta(a_3-a_2)} \end{aligned} \right\} \quad (2)$$

where β is the common phase constant of propagation along coupled helices, a_1 is the mean radius of inner helix, a_2 is the mean radius of coupling helix, a_3 is the inner radius of the shield. The coupling phase constant for synchronous helices is [2]

$$\beta_c = 2\beta a_1. \quad (3)$$

Hence the coupling wavelength is

$$\lambda_c = \frac{2\pi}{\beta_c} = \frac{\pi}{\beta k}. \quad (4)$$

In order to completely transfer the power, the length of the coupling helix must be equal to half of the coupling wavelength λ_c .

To arrive at an optimum dimensioning of helix couplers, let us examine the relation between the coupling phase constant and the phase constant of the propagation along an uncoupled helix. This will, at the same time, give the approximate frequency dependence of the coupling phase constant, as the phase constant along a single helix is proportional to the frequency.

The inner radius of the shield can be expressed as

$$a_3 = a_2 + h \quad (5)$$

where h is the mean distance between the coupling helix and its shield.

The relation between the coupling phase constant and the single helix phase constant is obtained by substituting (1) and (2) into (3) and taking into account (5).

Then we get

$$\beta_c = 2\beta e^{-\beta(a_2-a_1)} \sqrt{\frac{1 - e^{-2\beta h}}{1 - e^{-2\beta(a_2-a_1+h)}}}. \quad (6)$$

It is more advantageous to have this equation written in a dimensionless form. To this end both sides of the equation are multiplied by a_1 and the exponents are transformed with the result

$$\beta_c a_1 = 2\beta a_1 e^{-\beta a_1((a_2/a_1)-1)} \sqrt{\frac{1 - e^{-2\beta a_1(h/a_1)}}{1 - e^{-2\beta a_1((a_2/a_1)-1+(h/a_1))}}}. \quad (7)$$

Equation (7) includes two parameters; a_2/a_1 is the ratio of the mean radius of the coupling helix to that of the inner helix; h/a_1 is the ratio of the mean distance between the coupling helix and its shield to the inner-helix mean radius.

Figure 1 shows the dependence of $\beta_c a_1$ on βa_1 for different h/a_1 values, with $a_2/a_1 = 2$. The curve with $h/a_1 = \infty$ corresponds to the case when the coupling helix is not shielded. The remaining curves indicate the effect of shielding. It is to be seen from this figure that taking into account the effect of the shield a lower value is obtained for β ; that gives a longer coupling helix as compared to that obtained when the effect of the shield is neglected. Consequently, a better agreement with the experimental results is attained if the effect of the shield is taken into account [3].

In the vicinity of the maximum the coupling phase constant has a nearly constant value over a wide band as seen in Fig. 1. Therefore, the maximum of the curve

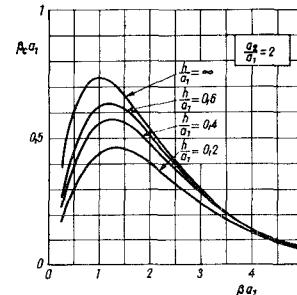


Fig. 1. Coupling phase constant as a function of the single-helix phase constant for different h/a_1 values, with $a_2/a_1 = 2$.

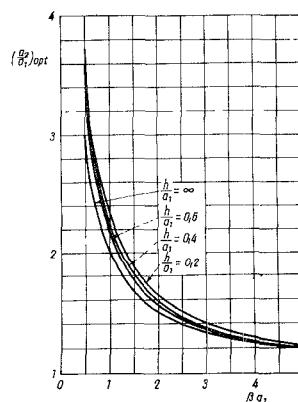


Fig. 2. Optimum a_2/a_1 ratio as a function of the single-helix phase constant for different h/a_1 values.

Manuscript received August 17, 1964; revised February 15, 1965.